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Abstract

In this research, we have worked on the brittle fracture of graphene nano-ribbon
to explore the behavior of crack propagation at different crack angles. We have
performed classical Molecular Dynamics simulations using LAMMPS at ten different
crack angles between 0 degrees and 45 degrees, in an increment of 5 degrees to observe
the parameters that dominate the crack path. The graphene nanoribbon is loaded
in the zigzag direction by pulling it in the armchair direction with a pre-existing
crack in the center. We have used OVITO for the visualization of the simulation.
AIREBO potential is employed in this work because it is extensively used in the
fracture of graphene with different loading conditions and temperatures. The crack
path is determined for all ten nanoribbons and the nanoribbon with a crack at 25°
turned out to be the weakest because of the sharp crack tip and crack shape. The

results are validated with the published results and are in accordance with them.
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Chapter 1

Introduction

1.1 Graphene

In this age, when there is a huge requirement for synthesized materials of specific
material properties, Graphene has become popular because it is the strongest known
material. Not only it has excellent mechanical properties [3], but it also has very high
thermal conductivity [4] (potentially a high-demand material in the semiconductor

industry) and optical properties [5].

Graphene is a single layer of carbon atoms arranged in a honeycomb manner. This
honeycomb shape enables a material to have minimal density and relatively high

out-of-plane compression and shear properties.[0]
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Figure 1.1: Honeycomb structure of monolayer graphene. Figure taken
from [1]

This is one of the reasons why it has Young’s Modulus of 1 Terapascal and intrinsic
strength of 130 Gigapascals.[3] It is a super-material and can be used in multiple

industries like biomedical, composites, electronics, sensors, energy, etc.

1.2 Molecular Dynamics

Molecular Dynamics is the study of movements of atoms/molecules which is per-
formed through a computer simulation. It is employed for studies in the area of
material science, biophysics, chemical physics, etc. It is the calculation of trajecto-
ries of atoms using Newton’s equations of motion. All interactions between different

atoms in a system are given in an interatomic potential, which is used to calculate
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the forces between atoms and potential energies of the atoms.[7]

]

Setup atomistic
model

Calculate forces

i

Analyze data

| | : |
| } 1 l b=+ At | | :
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atomic position position and .

I and velocity I I velocity | I Output results |
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I D'E'ﬁl'lﬁ I I l I :
I| forceheta [*1 I |
| Initializati | | |

L nIAanzaton L I

Figure 1.2: Schematic of a Molecular Dynamics simulation. Figure taken
from [2]

In the initialization part, first, the atomistic model (geometry) is set up and then the
model is defined through an input file that contains information such as boundary
conditions, temperature, timesteps, etc. The forcefield is a mathematical function

that calculates the potential energy of atoms in a system using their location.

In the simulation part, force is calculated by differentiating the total energy with
respect to atomic locations, and the atomic locations and velocities are updated.
It keeps on calculating forces and updating atomic locations and velocities until a
maximum number of timesteps are reached.

In the post-processing part, data is

analyzed and then output results are visualized using visualization tools.
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Chapter 2

Theory and Practice

This work is based on Datta et al.[§], only the crack geometry is slightly changed and
the set of angles considered. We have used LAMMPS (Large-scale Atomic/Molecular
Massively Parallel Simulator) to perform molecular simulations.[9] The dump files

from LAMMPS are then used to visualize our results in OVITO.[10]

In this work, we have taken a graphene nanoribbon(GNR) of size 150 x 150 A° with
a pre-crack of half-length 15 A°(ag) and it is tensile loaded in the armchair direction
(zigzag graphene).[I1] The number of carbon atoms is 8870. It is a 2D simulation,
so the z velocity of the atoms is fixed, and to make this a non-periodic simulation,
periodic boundary conditions are taken along with a larger size of the simulation box

so that the atoms do not cross the boundary. This is depicted in Figure 2.1.

www.manharaa.com




Figure 2.1: GNR inside the simulation box with a pre-crack oriented at 0°.
The x and y axes correspond to the horizontal and vertical axes respectively.

2.1 LAMMPS

To perform any MD simulation, typically three files are required. They are input
files, data files, and potential files. The data file is visualized in the Figure 2.1 and
2.2. Figure 2.2 also shows two orientations of graphene: armchair and zigzag. In this

work, the GNR is pulled in the armchair direction, so that makes it loaded in zigzag

www.manaraa.com



Figure 2.2: GNR with a pre-crack oriented at 45°.
direction, hence it is also called zigzag graphene. We have used AIREBO potential
for our simulation because it is commonly used for graphene simulations and captures
the physics better than other potentials available.[12] Metal units are used for all the
simulations. Berendsen thermostat is used to carry out all the simulations at room
temperature (300K). The timestep given is 0.001 ps and the displacement rate of the

top layer of carbon atoms is 0.01 A°s™ !
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2.2 Griffith’s brittle fracture

Zhang, P., Ma, L., Fan, F. et al. have shown that the classic Griffith theory of brittle
fracture applies to graphene.[I3] The Griffith’s criterion for a central crack of length

2ayq is given by,

0. =/ 2vE/may (2.1)

where o, is the stress at fracture, E is Young’s modulus, aq is the half-length of the
crack, and v is the edge energy. This criterion is used to validate the simulation

results later in this report.
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Chapter 3

Results and Discussion

The final image of the MD simulation obtained from OVITO is shown along with
the stress-strain curve in the results below for the corresponding ten angles. The
stress values are then used to calculate the critical stress intensity factor of fracture,
K.. Later, the K_.’s of all ten GNR are then compared with the published results for

validation.

The stress in the images is stress in the Y direction because we are displacing the
nanoribbon in the positive y-direction. Rainbow scale is chosen to visualize the stress,

where red is the highest, green is in the middle, and blue is the lowest.

MATLAB is used to plot all the stress-strain curves.[14] The displacement rate of the

top layer of GNR is taken to be the value that corresponds to clear crack propagation.
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GNR with a pre-crack oriented at 0°
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Crack propagation in GNR with a pre-crack at 0°.

Figure 3.1
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3.2 GNR with a pre-crack oriented at 5°
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Crack propagation in GNR with a pre-crack at 5°.

Figure 3.2
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3.3 GNR with a pre-crack oriented at 10°
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3.4 GNR with a pre-crack oriented at 15°
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Figure 3.4: Crack propagation in GNR with a pre-crack at 15°.
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3.5 GNR with a pre-crack oriented at 20°
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Figure 3.5: Crack propagation in GNR with a pre-crack at 20°.
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3.6 GNR with a pre-crack oriented at 25°
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Figure 3.6: Crack propagation in GNR with a pre-crack at 25°.
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3.7 GNR with a pre-crack oriented at 30°
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3.8 GNR with a pre-crack oriented at 35°
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Figure 3.8: Crack propagation in GNR with a pre-crack at 35°.
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3.9 GNR with a pre-crack oriented at 40°
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Figure 3.9: Crack propagation in GNR with a pre-crack at 40°.
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3.10 GNR with a pre-crack oriented at 45°
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Figure 3.10: Crack propagation in GNR with a pre-crack at 45°.

3.11 Virial stress computation in LAMMPS

Virial stress computation as mentioned in Dr. Dibakar Datta’s PhD thesis is given

by equation 3.1.[15] For homogeneous systems, it is a measure of mechanical stress
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on molecular level.

|Mz

V _ L iv: iv: kl( int) ( (ewt) k A:g) (31)
2V L

The virial stress computation in LAMMPS for an atom numbered 1 is given by
equation 3.2.[I5] The six components of a symmetric tensor is genereated when a and

b take on the values x, y, and z.

Np Ny

1
Sap = — |muvp + = Z Tlth, + r2aF2b) 2 Z (rlaFlb + r2aF217) +

n=1
1 Ng 1 Nd
3 > (r1 Py + 1o, By s, Fy) + 1 > (1 Py, + 1o, By 413, Fs, 414, Fyy) +

n=1 n=1

N

N, Ny
1
> (r1 By A+ 2, By, + 15, Fy, + 14, Fy,) + Kspace (ry,, Fy,) + Y 13, F,

n=1 n=1

W

(3.2)

This formulation is in pressure(stress) x volume units. To convert it into units of
stress, we need to divide it by volume per-atom. But in a deformed structure, the
volume per-atom is ill defined. So, to get total pressure of the system, the sum of
diagonal elements of stress tensor of individual atoms for all atoms in the system is
divided by the product of dimension and volume of the system.[I5] So, to get stress

in GPa, we take a product of LAMMPS value and a multiplication factor.

Multiplication factor is given by 1/volume per-atom x le-4 (1 bar = le-4 GPa). We
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have 8860 atoms and size of the nanoribbon is 150 x 150 A°. So, volume per-atom

in this work is 8.66 A3. In our case the multiplication factor is 1.155e-5.[15]

3.12 Stress-Strain curve
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T

60 T T

—+—GNR with 0 degree crack

—e— GNR with 5 degree crack
50 - ——GNR with 10 degree crack
——GNR with 15 degree crack
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—~—GNR with 35 degree crack

GNR with 40 degree crack

—¢—GNR with 45 degree crack
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o
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Figure 3.11: Stress-strain curve for all GNRs

The strain values in the Figure 3.11 look higher than expected, but it is dependent
on the rate at which the nanoribbon is pulled. In this work, this is checked through

varying the rate of displacement and observing the change in values of stress at
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fracture. No significant change in values of stress at fracture was found, and the rate

at which we get a clear crack propagation was taken.

3.13 Validation

From Zhang, P., Ma, L., Fan, F. et al, the average value of K. obtained is 4.0 MPa./m,
with a standard deviation of 0.6 MPay/m.[I13] In Table 3.1, this value is compared
with K. values for all ten cracked GNRs. K. is equal to o./Tag.[13]

Table 3.1
Calculated K. values corresponding to their crack angles

crack angle 0 ) 10 15 20 25 30 35 40 45
K. | 348 3.69 345 323 32 29 3.65 3.17 3.59 3.48

According to Griffith’s criterion, the product of 0. and /ag has to be constant. o, \/ag
range in the referred article is 1.73 to 2.78 MPa+/m. In this report, only the 25° crack
has a value of 1.64 MPay/m that goes below the given range. Hence, the simulation

results are in accordance with the published results. Table 3.2 contains o, \/ag values

for all ten GNRs.

Table 3.2
Calculated o, 1/ag values corresponding to their crack angles

crack angle 0 5 10 15 20 25 30 35 40 45
oc/ap | 1.96 2.08 1.95 182 1.8 1.64 206 1.79 2.03 1.96
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All the values are around 2 MPa/m, so it can be considered as a constant. Hence,

Griffith’s theory is applicable to graphene.

3.14 Conclusion

After analyzing the results from MD simulations, the crack path can be observed for
all ten GNRs. It can be concluded that the GNR with crack at 25° angle has the
lowest strength because it has the sharpest crack tip and slightly different crack shape
than other GNRs. This conclusion is specific for a particular crack length. It can
also be said that the crack path depends on the length of the crack, orientation of

the crack, crack tip sharpness, and also the shape of the crack.

3.15 Future work

Since MD simulations are computationally expensive, our future work involves pre-
diction of fracture in graphene using Deep Learning. The goal is to reduce the time

required in making fracture path predictions by bypassing MD simulations with a

machine learning model.
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